Difference between revisions of "Annotation:Text:Adaptation and Viability/Csz5h82gpk"

From DigiVis
Jump to: navigation, search
 
Line 2: Line 2:
 
{{TextAnnotation
 
{{TextAnnotation
 
|AnnotationOf=Text:Adaptation_and_Viability
 
|AnnotationOf=Text:Adaptation_and_Viability
|LastModificationDate=2019-07-23T11:42:20.948Z
+
|LastModificationDate=2019-07-23T11:42:54.400Z
 
|LastModificationUser=User:Sarah Oberbichler
 
|LastModificationUser=User:Sarah Oberbichler
 
|AnnotationMetadata=^"permissions":^"read":ӶӺ,"update":ӶӺ,"delete":ӶӺ,"admin":ӶӺ°,"user":^"id":6,"name":"Sarah Oberbichler"°,"id":"Csz5h82gpk","ranges":Ӷ^"start":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ13Ӻ","startOffset":0,"end":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ14Ӻ","endOffset":1041°Ӻ,"quote":"Finally, when we come to the genesis of culture, we have to take into account a phenomenon that is radically different from anything that occurs in biological evolution: the rapid propagation, within a population of organisms, of novel behaviors that, at the time of their spread, have nothing whatever to do with the organisms’ survival or their genetic fitness in terms of the perpetuation of their genes. We have, today, enough observational material to say that there are indeed behaviors that spread in a population without the help of genetic processes or natural selection. They spread for reasons that many of us may be reluctant to specify. Let me cite one example that is particularly well-documented and well-known: the Japanese macaque Imo on Koshima Islet that started washing her sweet potatoes (Kawai, 1965). Within 10 years the entire population, with the exception of a few old males who were too conservative, practiced potato washing. There was no time for a mutation or some other genetic accident to increase or decrease anyone’s viability. Nor, indeed, is there any evidence that potato washing has increased anyone’s genetic fitness. But as the new activity quickly created exceptional familiarity with water, it led to yet another novel behavior: swimming. Since all this has taken place in a country where earthquakes and tectonic disasters are not at all impossible, it might be tempting to conjecture that if Koshima Islet should one day sink into the sea, the swimming skill might yet become the crucial feature that allows these macaques to reach a safe shore while the macaques in other sinking regions perish. Subsequent generations of sociobiologists could then use the swimming macaques as a textbook example for \n“evolutionary explanation.”\nBut such a scenario in which swimming might become an important asset toward the survival of macaques or macaque genes has not yet happened. Yet the washing of food and swimming have become part of the behavioral repertoire of a macaque population without the benefit of an evolutionary explanation. Who is to say how many quite generally exhibited behaviors in the repertoire of more or less sophisticated organisms have arisen in the same spontaneous, selection-independent way? The proposal of radical sociobiologists to reduce the origin of all behaviors to the “mechanistic” process of natural selection seems doomed from the start. The reason, I believe, is again the misconception of selection as a mechanistic, i.e., efficient cause. \nFrom an evolutionary point of view, it would be far more consistent to say that, like mutations, novel behaviors may arise for no biological reason at all and may be perpetuated from generation to generation, provided they do not diminish the organisms’ biological viability below a critical point.","highlights":Ӷ^"jQuery32102899703367160172":^°°,^"jQuery32102899703367160172":^°°Ӻ,"text":"","category":"Argumentation2","data_creacio":1559575513135°
 
|AnnotationMetadata=^"permissions":^"read":ӶӺ,"update":ӶӺ,"delete":ӶӺ,"admin":ӶӺ°,"user":^"id":6,"name":"Sarah Oberbichler"°,"id":"Csz5h82gpk","ranges":Ӷ^"start":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ13Ӻ","startOffset":0,"end":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ14Ӻ","endOffset":1041°Ӻ,"quote":"Finally, when we come to the genesis of culture, we have to take into account a phenomenon that is radically different from anything that occurs in biological evolution: the rapid propagation, within a population of organisms, of novel behaviors that, at the time of their spread, have nothing whatever to do with the organisms’ survival or their genetic fitness in terms of the perpetuation of their genes. We have, today, enough observational material to say that there are indeed behaviors that spread in a population without the help of genetic processes or natural selection. They spread for reasons that many of us may be reluctant to specify. Let me cite one example that is particularly well-documented and well-known: the Japanese macaque Imo on Koshima Islet that started washing her sweet potatoes (Kawai, 1965). Within 10 years the entire population, with the exception of a few old males who were too conservative, practiced potato washing. There was no time for a mutation or some other genetic accident to increase or decrease anyone’s viability. Nor, indeed, is there any evidence that potato washing has increased anyone’s genetic fitness. But as the new activity quickly created exceptional familiarity with water, it led to yet another novel behavior: swimming. Since all this has taken place in a country where earthquakes and tectonic disasters are not at all impossible, it might be tempting to conjecture that if Koshima Islet should one day sink into the sea, the swimming skill might yet become the crucial feature that allows these macaques to reach a safe shore while the macaques in other sinking regions perish. Subsequent generations of sociobiologists could then use the swimming macaques as a textbook example for \n“evolutionary explanation.”\nBut such a scenario in which swimming might become an important asset toward the survival of macaques or macaque genes has not yet happened. Yet the washing of food and swimming have become part of the behavioral repertoire of a macaque population without the benefit of an evolutionary explanation. Who is to say how many quite generally exhibited behaviors in the repertoire of more or less sophisticated organisms have arisen in the same spontaneous, selection-independent way? The proposal of radical sociobiologists to reduce the origin of all behaviors to the “mechanistic” process of natural selection seems doomed from the start. The reason, I believe, is again the misconception of selection as a mechanistic, i.e., efficient cause. \nFrom an evolutionary point of view, it would be far more consistent to say that, like mutations, novel behaviors may arise for no biological reason at all and may be perpetuated from generation to generation, provided they do not diminish the organisms’ biological viability below a critical point.","highlights":Ӷ^"jQuery32102899703367160172":^°°,^"jQuery32102899703367160172":^°°Ӻ,"text":"","category":"Argumentation2","data_creacio":1559575513135°
 
}}
 
}}
 
{{Thema
 
{{Thema
|field_text_autocomplete=Viabilität
+
|field_text_autocomplete=Evolution
 
}}
 
}}

Latest revision as of 10:43, 23 July 2019

Annotation of Text:Adaptation_and_Viability
Annotation Comment
Last Modification Date 2019-07-23T11:42:54.400Z
Last Modification User User:Sarah Oberbichler
Annotation Metadata
^"permissions":^"read":ӶӺ,"update":ӶӺ,"delete":ӶӺ,"admin":ӶӺ°,"user":^"id":6,"name":"Sarah Oberbichler"°,"id":"Csz5h82gpk","ranges":Ӷ^"start":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ13Ӻ","startOffset":0,"end":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ14Ӻ","endOffset":1041°Ӻ,"quote":"Finally, when we come to the genesis of culture, we have to take into account a phenomenon that is radically different from anything that occurs in biological evolution: the rapid propagation, within a population of organisms, of novel behaviors that, at the time of their spread, have nothing whatever to do with the organisms’ survival or their genetic fitness in terms of the perpetuation of their genes. We have, today, enough observational material to say that there are indeed behaviors that spread in a population without the help of genetic processes or natural selection. They spread for reasons that many of us may be reluctant to specify. Let me cite one example that is particularly well-documented and well-known: the Japanese macaque Imo on Koshima Islet that started washing her sweet potatoes (Kawai, 1965). Within 10 years the entire population, with the exception of a few old males who were too conservative, practiced potato washing. There was no time for a mutation or some other genetic accident to increase or decrease anyone’s viability. Nor, indeed, is there any evidence that potato washing has increased anyone’s genetic fitness. But as the new activity quickly created exceptional familiarity with water, it led to yet another novel behavior: swimming. Since all this has taken place in a country where earthquakes and tectonic disasters are not at all impossible, it might be tempting to conjecture that if Koshima Islet should one day sink into the sea, the swimming skill might yet become the crucial feature that allows these macaques to reach a safe shore while the macaques in other sinking regions perish. Subsequent generations of sociobiologists could then use the swimming macaques as a textbook example for \n“evolutionary explanation.”\nBut such a scenario in which swimming might become an important asset toward the survival of macaques or macaque genes has not yet happened. Yet the washing of food and swimming have become part of the behavioral repertoire of a macaque population without the benefit of an evolutionary explanation. Who is to say how many quite generally exhibited behaviors in the repertoire of more or less sophisticated organisms have arisen in the same spontaneous, selection-independent way? The proposal of radical sociobiologists to reduce the origin of all behaviors to the “mechanistic” process of natural selection seems doomed from the start. The reason, I believe, is again the misconception of selection as a mechanistic, i.e., efficient cause. \nFrom an evolutionary point of view, it would be far more consistent to say that, like mutations, novel behaviors may arise for no biological reason at all and may be perpetuated from generation to generation, provided they do not diminish the organisms’ biological viability below a critical point.","highlights":Ӷ^"jQuery32102899703367160172":^°°,^"jQuery32102899703367160172":^°°Ӻ,"text":"","category":"Argumentation2","data_creacio":1559575513135°
Thema Evolution