Editing Annotation:Text:Conceptual Models in Educational Research and Practice/Jmpj0u7zw3

Jump to: navigation, search

Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then save the changes below to finish undoing the edit.

This page supports semantic in-text annotations (e.g. "[[Is specified as::World Heritage Site]]") to build structured and queryable content provided by Semantic MediaWiki. For a comprehensive description on how to use annotations or the #ask parser function, please have a look at the getting started, in-text annotation, or inline queries help pages.

Latest revision Your text
Line 2: Line 2:
 
{{TextAnnotation
 
{{TextAnnotation
 
|AnnotationOf=Text:Conceptual_Models_in_Educational_Research_and_Practice
 
|AnnotationOf=Text:Conceptual_Models_in_Educational_Research_and_Practice
|LastModificationDate=2019-07-23T16:29:45.849Z
+
|AnnotationComment=In order to formulate even the most tentative model of cognitive change, educational scientists must witness the growth of mathematical knowledge in particular children and clarify and substantiate their interpretations by means of deliberate interventions. Conceptual analysis alone is simply not sufficient as a source of insight in model building. It is only on the basis of models of particular children, that a more general model can eventually be abstracted – and the models of particular children are a natural bridge between educational scientists and the teachers.
 +
|LastModificationDate=2019-06-11T19:22:38.827Z
 
|LastModificationUser=User:Sarah Oberbichler
 
|LastModificationUser=User:Sarah Oberbichler
|AnnotationMetadata=^"permissions":^"read":ӶӺ,"update":ӶӺ,"delete":ӶӺ,"admin":ӶӺ°,"user":^"id":6,"name":"Sarah Oberbichler"°,"id":"Jmpj0u7zw3","ranges":Ӷ^"start":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ19Ӻ","startOffset":0,"end":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ19Ӻ","endOffset":1675°Ӻ,"quote":"Both educational scientists and teachers in the field of mathematics education try to model the children’s mathematical reality and how that reality may be cognitively built up piece by piece. The first, the scientists, may be mainly interested in establishing the hard core of a mathematics learning theory that would be applicable to as large a number of children as possible, but the viability of that theory, to quote Lakatos again, depends on “confirmations or ‘verifications’ that sustain a scientific research program. ” Consequently, in order to “confirm” or “verify” their theory, the scientists must “test” it by observing individuals. But – and this is crucial from the cognitive point of view – the tests in this context do not primarily concern the level of performance of new children but rather the question of whether or not the model can be maintained in the face of observations and teaching experiments with new children. However, it is not only in the context of justification but also in the context of re-invention that the scientific investigators need to observe individuals. In order to formulate even the most tentative model of cognitive change, educational scientists must witness the growth of mathematical knowledge in particular children and clarify and substantiate their interpretations by means of deliberate interventions. Conceptual analysis alone is simply not sufficient as a source of insight in model building. It is only on the basis of models of particular children, that a more general model can eventually be abstracted – and the models of particular children are a natural bridge between educational scientists and the teachers.","highlights":Ӷ^"jQuery3210198867490764852772":^°°,^"jQuery3210198867490764852772":^°°,^"jQuery3210198867490764852772":^°°Ӻ,"text":"","category":"Argumentation2","data_creacio":1560273386304°
+
|AnnotationMetadata=^"permissions":^"read":ӶӺ,"update":ӶӺ,"delete":ӶӺ,"admin":ӶӺ°,"user":^"id":6,"name":"Sarah Oberbichler"°,"id":"Jmpj0u7zw3","ranges":Ӷ^"start":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ19Ӻ","startOffset":0,"end":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ19Ӻ","endOffset":1675°Ӻ,"quote":"Both educational scientists and teachers in the field of mathematics education try to model the children’s mathematical reality and how that reality may be cognitively built up piece by piece. The first, the scientists, may be mainly interested in establishing the hard core of a mathematics learning theory that would be applicable to as large a number of children as possible, but the viability of that theory, to quote Lakatos again, depends on “confirmations or ‘verifications’ that sustain a scientific research program. ” Consequently, in order to “confirm” or “verify” their theory, the scientists must “test” it by observing individuals. But – and this is crucial from the cognitive point of view – the tests in this context do not primarily concern the level of performance of new children but rather the question of whether or not the model can be maintained in the face of observations and teaching experiments with new children. However, it is not only in the context of justification but also in the context of re-invention that the scientific investigators need to observe individuals. In order to formulate even the most tentative model of cognitive change, educational scientists must witness the growth of mathematical knowledge in particular children and clarify and substantiate their interpretations by means of deliberate interventions. Conceptual analysis alone is simply not sufficient as a source of insight in model building. It is only on the basis of models of particular children, that a more general model can eventually be abstracted – and the models of particular children are a natural bridge between educational scientists and the teachers.","highlights":Ӷ^"jQuery3210446846850196055742":^°°,^"jQuery3210446846850196055742":^°°,^"jQuery3210446846850196055742":^°°,^"jQuery3210446846850196055742":^°°,^"jQuery3210446846850196055742":^°°Ӻ,"text":"In order to formulate even the most tentative model of cognitive change, educational scientists must witness the growth of mathematical knowledge in particular children and clarify and substantiate their interpretations by means of deliberate interventions. Conceptual analysis alone is simply not sufficient as a source of insight in model building. It is only on the basis of models of particular children, that a more general model can eventually be abstracted – and the models of particular children are a natural bridge between educational scientists and the teachers. ","category":"Argumentation2","data_creacio":1560273386304°
 
}}
 
}}
 
{{Thema
 
{{Thema
 
|field_text_autocomplete=Lernen
 
|field_text_autocomplete=Lernen
 
}}
 
}}

Please note that all contributions to DigiVis are considered to be released under the Creative Commons Attribution-NonCommercial-ShareAlike (see DigiVis:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!

Cancel Editing help (opens in new window)