Annotation Metadata
|
^"permissions":^"read":ӶӺ,"update":ӶӺ,"delete":ӶӺ,"admin":ӶӺ°,"user":^"id":6,"name":"Sarah Oberbichler"°,"id":"Bhotioygvv","ranges":Ӷ^"start":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ14Ӻ","startOffset":0,"end":"/divӶ3Ӻ/divӶ4Ӻ/divӶ1Ӻ/pӶ15Ӻ/supӶ1Ӻ/aӶ1Ӻ","endOffset":3°Ӻ,"quote":"Figural patterns can be divided into two groups: Those that are constituted as a spatial configuration (to which corresponds a scan-path) and those that are constituted as temporal sequence (to which corresponds a rhythm). In both groups empirical abstraction from the actual sensory material out of which particular configurations or sequences are built up, yields figural patterns that have a certain general applicability and can be semantically associated with specific names. Thus we have, for instance, the notion of “triangularity” that enables us to see spatial configurations as triangles irrespective of their color, size, angles, or other sensory properties; and in the temporal group we have notions such as “waltz” or “iambus” which enable us to recognize these specific rhythms irrespective of the auditory particulars with which they happen to be implemented. Since subitizing has mostly been studied as a visual phenomenon, I shall first deal with the semantic connections formed between number words and spatial configurations and only then with those involving temporal patterns. \nIf a child is given a set of wooden or plastic numerals to play with and these toys are occasionally pointed out by the parents as a “three”, a “one”, an “eight”, etc., the child will quickly associate the visual patterns with the appropriate name. If he then gets dominoes, he will add dot-configurations as alternative semantic connections to the number words, and he will do the same for the characteristic arrangements of design elements on playing cards as soon as he is introduced to a card game. In fact, the child will continue to add connections for any pattern that experientially co-occurs consistently with one and the same number word. That is in no way different from what a child has to do, and does, to acquire proficiency in the use of ordinary words such as “dog”. If a poodle happens to be part of the household, a representation of the poodle-percept will be the first meaning of the word. As other dogs enter the child’s experience, new perceptual patterns will be associated with the word. Though there have been theories that suggested it (e.g. Katz & Foder, 1963), it is utterly inconceivable that a child actually forms a universal representation of dog percepts when he or she discovers that adults use the word “dog” to refer, not only to his poodle, but also to a Dachshund, a Great Dane, a St. Bernard, and a bulldog. No common figural representation could cover that variety of canines without erroneously including members of other species as well (cf. Barrett, 1978). Hence children may over-extend the use of the word and say “dog” when first they see a lamb or a calf. But children do learn to use the word “dog” appropriately for visually quite different animals that belong to the class of canines only because zoologists have adopted a taxonomic definition that is based on features which are remote from children’s visual or sensorirnotor experience. The acquisition of appropriate use becomes plausible if we think of it as the result of alternative representations linked to one word by separate associations rather than as a variety of experiences connected to one common representation.Ӷ8Ӻ","highlights":Ӷ^"jQuery321045591195621093472":^°°,^"jQuery321045591195621093472":^°°,^"jQuery321045591195621093472":^°°,^"jQuery321045591195621093472":^°°,^"jQuery321045591195621093472":^°°,^"jQuery321045591195621093472":^°°,^"jQuery321045591195621093472":^°°,^"jQuery321045591195621093472":^°°Ӻ,"text":"","order":"mw-content-text","category":"Argumentation2","data_creacio":1595598866762°
|